Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 10th International Conference on Emerging Materials and Nanotechnology Vancouver, British Columbia, Canada.

Submit your Abstract
or e-mail to

[email protected]
[email protected]
[email protected]

Day 1 :

Keynote Forum

Carlo Montemagno

University of Alberta, Canada

Keynote: Small things offer big promise
Emerging Materials 2017 International Conference Keynote Speaker Carlo Montemagno photo
Biography:

Driven by the principles of excellence, honor and responsibility and an unwavering commitment to education as an engine of economic prosperity, Carlo Montemagno, PhD has become a world-renowned expert in nanotechnology and is responsible for creating groundbreaking innovations which solve complex challenges in the areas of informatics, agriculture, chemical refining, transportation, energy, and healthcare. He was Founding Dean of the College of Engineering and Applied Sciences at University of Cincinnati; received a Bachelor of Science degree in Agriculture and Bio Engineering from Cornell University; a Master’s Degree in Petroleum and Natural Gas Engineering from Penn State and a PhD in Civil Engineering and Geological Sciences from Notre Dame. He is now in Alberta as the Director of Ingenuity Lab, professor in the Department of Chemical and Materials Engineering at the University of Alberta, AITF Strategic Chair of Bionanotechnology, Program Lead of the Biomaterials Program at the National Institute for Nanotechnology and Canada Research Chair in Intelligent Nanosystems. “Research and education are critical to success because the transfer of knowledge creates economic prosperity.” — C. Montemagno Carlo Montemagno has been recognized with prestigious awards including the Feynman Prize (for creating single molecule biological motors with nano-scale silicon devices); the Earth Award Grand Prize (for cell-free artificial photosynthesis with over 95% efficiency); the CNBC Business Top 10 Green Innovator award (for Aquaporin Membrane water purification and desalination technology); and named a Bill & Melinda Gates Grand Challenge Winner (for a pH sensing active microcapsule oral vaccine delivery system which increased vaccine stability and demonstrated rapid uptake in the lower GI tract.)

Abstract:

The ability to use machines to manipulate matter a single molecule at a time renders many things possible that were impossible before. Living systems do this on a regular basis. The core challenge to accessing life function is transforming the labile molecules that exist in a fragile living organism into a stable engineered system that is economically scalable. The most significant difficulties revolve around environmental stability and the inherent structural limitations of these molecules. The solution to these difficulties is at hand.
 
Presented is the generic solution methodology used to solve these limiting challenges to produce a new class of materials and devices. By introducing “metabolism” into engineered devices and materials, solutions to grand societal challenges in Medicine, Environment, and Agriculture now appear to be attainable. Furthermore this new technology does not rely on $100’s of millions of infrastructure making it globally assessable to developing nations. It offers a global promise of economic opportunity and prosperity.
 
Exemplars of the application of this new technology will be shown. We will elucidate the design, engineering and assembly of a complex closed system that uses a highly modified photosynthetic process to transform carbon waste into valuable drop-in specialty chemicals.  Enabled by the synthesis of a new class of printable “inks” that have stabilized active biological molecules as integrated elements of synthesized polymer constructs, we will present a technology that transitions additive manufacturing from 3D space to a four-dimensional, functional space creating a whole new class of materials and devices. The application of this technology to medicine, in particular the treatment of type 1 diabetes, glaucoma and other medical conditions will also be illustrated.  

Keynote Forum

Beng S. Ong

Hong Kong Baptist University, Hong Kong

Keynote: Progress in semiconductor materials and processes for printed transistors
Emerging Materials 2017 International Conference Keynote Speaker Beng S. Ong photo
Biography:

Beng Ong is presently Director of Research Centre of Excellence for Organic Electronics and Chair Professor of Materials Science at Hong Kong Baptist University. He was formerly a Nanyang Professor at Nanyang Technological University in Singapore, who also held joint appointments as Director at Institute of Materials Research and Engineering and Singapore Institute of Manufacturing Technology. Prior to his relocation to Asia in 2007, Prof. Ong was a Senior Xerox Fellow and 21st-Century Materials Strategist at Xerox Corporation as well as Area Manager at Xerox Research Centre of Canada. Over the years, he had had held adjunct professorships at various universities including McMaster University and University of Waterloo in Canada, and Honorary Professorship at Shanghai East China University of Science and Technology in China. Prof. Ong publishes extensively in advanced materials, organic electronics, nanotechnology, etc. and currently has a patent portfolio of 230 US patents and many foreign equivalent patents.  

Abstract:

In recent years, significant advances have been made in organic semiconductor materials and process development for printed electronics. The field-effect mobility of organic thin-film transistors (OTFTs) has progressed from gross performance deficiency over a decade ago to meeting electronic application requirements today. This quantum leap in OTFT performance has been propelled by both creative semiconductor design and process innovation. Notwithstanding these achievements, there remain significant technical challenges for transitioning printed transistors from laboratory to marketplace.
 
This presentation discusses the issues and challenges of printed transistors and potential approaches to circumventing these technical difficulties.  Particular emphasis will focus on materials design and process strategies directed to promoting ad facilitating molecular self-assembly of polymer semiconductors to enhance charge carrier transport efficacy. Through simple solution processes under appropriate conditions, we have been able to drive molecular self-assembly of polymer semiconductors to significantly higher molecular orders, leading to greatly enhanced field-effect mobility and current modulation. 

Keynote Forum

Jas Pal Badyal

Durham University, United Kingdom

Keynote: Scalable functional nanocoatings
Emerging Materials 2017 International Conference Keynote Speaker Jas Pal Badyal photo
Biography:

Jas Pal Badyal FRS was awarded BA/MA and PhD degrees from Cambridge University; where he subsequently held King’s College and Oppenheimer fellowships.  He is the primary author / inventor on 175 peer reviewed journal publications / 41 patent families.  He has been recipient of the Royal Society of Chemistry Harrison Medal; the British Vacuum Council Burch Prize; the International Association of Advanced Materials Medal; and in 2016 he was elected a Fellow of the Royal Society (FRS) – UK and Commonwealth National Academy of Sciences.  His research has led to 3 successful start-up companies: Surface Innovations Ltd; Dow Corning Plasma Ltd; and P2i Ltd.

Abstract:

The worldwide market for functional surfaces exceeds $100 billion per annum (US Department of Energy).  A key driver is the added value that can be imparted to commercial products through the molecular engineering of their surface properties. For example, the cleanliness of optical lenses, the feel of fabrics, the resistance of biomedical devices to bacteria, the speed of computer hard disks, and even the wear of car brake pads are all governed by their surface properties. The fabrication of such surfaces requires the incorporation of specific functional groups; for which there exists no shortage of potential methods including: self-assembled monolayers (SAMs), Langmuir-Blodgett films, dip-coating, grafting, chemical vapour deposition, to name just a few. However such techniques suffer from drawbacks including substrate-specificity (cannot be easily adapted to different materials or geometries) and environmental concerns associated with the utilization of solvents, strong acid / base media, or heat.  A range of innovative solutions will be described for the molecular tailoring of solid surfaces.  Applications will include: super-repellency, non-fouling, anti-fogging, thermoresponsive, rewritable bioarrays, opto-chiral, antibacterial, electrical barrier, water harvesting, capture and release, oil-water separation, and nano-actuation.  This research has led to 41 patent families and the establishment of 3 successful start-up companies: Surface Innovations Ltd, Dow Corning Plasma Ltd, and P2i Ltd (2015 International Business Award for 'Most Innovative Company in Europe').

Keynote Forum

Hamed Sadeghian

Netherlands Organisation for Applied Scientific Research, TNO, Netherlands

Keynote: Probing the nano-scale with the use of Nano-Opto-Mechatronics Instruments (NOMI)
Emerging Materials 2017 International Conference Keynote Speaker Hamed Sadeghian photo
Biography:

Dr. Hamed Sadeghian received his PhD (Cum Laude) in 2010 from Delft University of Technology. He continued his career as a research associate and developed several nano-opto-mechanical instruments for nano-scale interaction measurement.  He is currently a Principal Scientist at TNO. His research program NOMI focuses on development of instruments based on the interaction of electromagnetic or mechanical/quantum waves with matter, with a focus on industrial and societal applications. Examples are the parallel AFM as a sub-nm, high throughput metrology and inspection solution for Semiconductor industry and the high resolution optical microscopy with metainstrument and 3D nanotomography to resolve invisible nanostructures below the surface. He is the scientific leader of the TNO Early Research Program 3D nanomanufacturing.  In the last 5 years, Hamed has participated in several EU-funded projects such as E450EDL, E450LMDAP, SeNaTe, Value4Nano, 3DAM and TakeMi5. In 2014 he received his MBA degree from Leuven Vlerick Business School, Belgium. He was also a co-founder of Jahesh Poulad Co. (2002), which designs, manufactures and installs mechanical and electrical equipment for steel industries. Hamed holds 40 patents, and has (co-) authored more than 60 technical papers and a book. He is a member of the editorial advisory board of Sensors & Transducers Journal and  a member of the technical committee of SENSORDEVICES conference. In 2012 he received the “TNO excellent researcher” award.

Abstract:

Understanding the interactions of matter at nano-scale has become the key for the success of several applications. In nanoelectronics or semiconductor industry, it helps for better manufacturing (higher resolution towards sub-10 nm  structures, more complex structures) and reliable nanometrology and nano-inspection (for improving the yield of process). One of the NOMI to probe the interactions at nano-scale is scanning probe microscope. The ability to accurately measure critical dimensions in nanometer scale, has made it an important instrument in several industrial applications such as semiconductor, solar and data storage. Single SPM has never been able to compete with other inspection systems in throughput, thus has not fulfilled the industry needs in throughput and cost. Further increase of the speed of the single SPM helps, but it still is far from the required throughput and, therefore, insufficient for high-volume manufacturing.
 
The first part of my talk presents the development of a concept for a multiple miniaturized SPM (MSPM) heads system (parallel SPM), which can inspect and measure many sites in parallel. The very high speed of miniaturized SPM heads allow the user to scan many area, each with the size of tens of microemeters, in few seconds. 
Various nanoimaging such as subsurface probe microscopy will also be presented.
 
The second part of my talk is about meta-instrument. Metainstrument is a type of optical nanoinstrument where the core is based on optical metamaterials to go beyond the diffraction limits for high resolution imaging. Advantages of optical techniques compared to SPM is that they provide direct capture imaging which is fast and allow large fields of views to be covered quickly. The development of first generation of metainstrument will be discussed in detail.
 

  • Session II
    Track 3: Advanced Emerging Materials
    Track 5: Materials: Characterization and Applications
Speaker

Co-Chair

Klaus G. Nickel

University TŁbingen, Germany

Speaker
Biography:

Klaus G. Nickel is Professor for Applied Mineralogy at the Faculty of Science of the University of Tübingen. His career involved a Dipl-Geol. from the University of Mainz (D), a PhD from the University of Tasmania (Hobart, AUS) and research positions at Max-Planck-Institutes (for Chemistry, Mainz, and Metals Research, Stuttgart). His main research interest is in materials science in the field of advanced ceramics and composites. The research covers processing, characterisation and evaluation of technical ceramics, typically alumina and zirconia in the oxides and carbon, carbides, nitrides, borides on the non-oxide side. Particular expertise exists in the chemical property evaluation (oxidation and corrosion). Other research goals are phase relations, mechanical properties and bionics of biomaterials and ceramics.

Abstract:

The design of spines from some reef inhabiting sea urchins (Heterocentrotus mamilatus, Phyllacanthus imperialis) has been shown to be responsible for a high energy dissipation during compressive straining. It is shown that unusually high stresses are required to compress the material, which fails in a "graceful" manner during an overall straining of several tens of percent. The principal behind the mechanism involves the layering / gradation / ordering of pore space within a basically brittle material (Calcite). We will show the details of the structures and the results of the characterization by uniaxial compression and pin indentation. The natural material has a hierarchical design including a structuring on the nano-scale to prevent a failure by simple cleavage. It would therefore be difficult to scale up all structural features of this brittle material. We will discuss how improvements of material can nonetheless be implemented by abstracting only the more macroscopic features and choosing a suitable material.

First efforts to apply this biomimetic principle to concrete as a modification of functional graded concretes confirm the effectiveness in construction materials. The design is not only beneficial for failure tolerance in cases of impacting objects but improves at the same time thermal insulation properties and lowers the total weight of constructions.  The concrete was realized by spraying and slip casting methods. We will also present a recently developed alternative method for the manufacture of 3D concrete constructions (“hydroplotting”), which allows the realization of very detailed designs. 

Speaker
Biography:

Yutaka Wakayama served at Asahi Glass Company, as a research engineer from 1989 to 1994. He was a research staff member at Tanaka Solid Junction Project, ERATO, JST from 1994 to 1998, and received his Ph. D degrees from University of Tsukuba in 1998. After working as a postdoctoral fellow at Max-Planck Institute for Microstructure Physic, Germany in 1998-1999, he joined National Institute for Materials Science (NIMS) in 1999. Now, he belongs to International Center for Materials Nanoarchitectonics (WPI-MANA) of NIMS. His current research interests are self- and directed-assemblies of molecules, functional organic field-effect transistors and molecular nanoelectronics.

Abstract:

We developed an optically controllable organic field transistor (OFET) by employing photochromic diarylethene (DAE) molecules as a transistor channel layer. DAE molecules are known to undergo photochromic reaction, i.e., reversible conformational change between closed- and open-ring isomers by alternating ultraviolet (UV) and visible (VIS) light irradiation. We found that the drain current in the DAE-based OFET also showed reversible change accompanied by this conformational change; the closed-ring isomer produced by UV light exhibited a transistor operation under appropriate gate and drain bias voltages, meanwhile the open-ring isomer produced by VIS light showed no drain current. As a result, a remarkably high on/off ratio of 1,000 was achieved. The drain current modulation can be attributed to the drastic transformation in the π-conjugation system in association with the photo-isomerization. These results present two important messages. The first one is that this compound has dual properties: organic semiconductor and photochromism. The second is that a phase transition between semiconductor and insulator can be induced by light irradiation.

Based on these achievements, we demonstrate laser drawing of one-dimensional (1D) channels on an OFET with a photochromic DAE layer (See Fig.1). The main findings are: i) a number of 1D channels can be written and erased repeatedly in the DAE layer by scanning UV and VIS focused laser spots alternately between the source and drain electrodes, ii) the conductivity of the 1D channel can be controlled by the illumination conditions, and iii) it is possible to draw an analogue adder circuit by optically writing 1D channels so as to overlap a portion of the channels and perform optical summing operations by local laser illumination on the respective channels. These findings will open new possibilities of various optically reconfigurable low-dimensional organic transistor circuits, which are not possible with conventional thin film OFETs.

Speaker
Biography:

Dr. Azam is the principal investigator of a materials and surface chemistry research group in the department of chemistry at Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh. His multidisciplinary research is focused on the development of new multifunctional materials for energy, health and environment. Multicomponent hybrid materials for achieving increased complexity and functionality in nanoparticles have attracted enormous attention from researchers. These nanomaterials are composed of discrete domains of different components and thus can exhibit the properties of different components in the same assembly. In the Azam group, they synthesize surface-tailored, size-controlled inorganic nanoparticles and polymeric materials as well as investigate their properties and potential applications.

Abstract:

Statement of the Problem: Antimicrobial materials based on various nanoparticles has attracted huge attention in last few decades because of the cheapness, easiness to use, and effectiveness in preventing annexation and proliferation of microbes on material surfaces. Paper has been used in many applications as a matrix to carry the nanoparticles due to its high porosity, considerable mechanical strength, and high availability. Silver nanoparticles (AgNPs) have widely been used as antibacterial/antifungal agents in a varied range of consumer products because of their large active surface area. However, effective methods for immobilizing AgNPs on cellulose paper or similar surfaces for various applications are inadequately advanced. Methodology & Theoretical Orientation: By exploiting a novel and simple mussel-inspired strategy here we present our method for immobilizing AgNPs on paper. First, we modified cellulose paper with dopamine molecules by a simple, efficient, and environmentally friendly approach. The dopamine molecules possess excellent adhesion and strong coordination with metal substrates through catechol groups offering a potentially robust interface between AgNPs and organic structure of paper. Next, AgNPs are deposited onto the paper by simply immersing dopamine modified paper in silver salt solution to attain the antimicrobial properties. Findings: The SEM study of the synthesized antimicrobial papers confirmed that the loading of AgNPs was time dependent and the average size of the nanoparticles became 50-60 nm after 12 h of deposition time. FTIR and XPS analysis of the paper modified at each steps revealed the introduction of new functional groups through the synthesis. The mechanical strength of the paper measured as similar as fresh filter paper by using an universal testing machine will also be presented. Conclusion & Significance: The paper decorated with AgNPs showed excellent antimicrobial activity against highly virulent and multiple antibiotics resistant gram positive and gram negative bacteria. It also showed antifungal activity against some extremely virulent fungal species.

Speaker
Biography:

Lay Shoko completed his Ph.D majoring in Chemistry from North West University (South Africa) in 2014. He is currently working as a Senior Research Technologist in the Department of Chemical Engineering at the Vaal University of Technology. His thesis was focused on the studying the effects of the chemical composition of coal tar pitch on dimensional changes during graphitization. He is currently working on a projects the involve producing activated carbon from coal tar pitch and its application in removal of phenols from waste water.

Abstract:

Coal can be converted to different chemical products through processes such destructive distillation. The destructive distillation of coal yields coke as the main product with by-products such as coal tar pitch (CTP). CTP has a wide range of applications especially in the carbon processing industries with typical applications including manufacture of anodes used in many electrochemical processes as well as Söderberg electrodes used in eletric arc furnances. This paper presents results from a study carried out to establish the baking isotherm temperature of coal tar pitch during thermal treatment. Thermomechanical analysis (TMA) was used to measure the dimensional changes which take place in pitch in the baking zone during thermal treatment. Elemental analysis, Fourier Transform Infra-Red (FT-IR) and Numclear Magnetic Resonace spectroscopy were used to evaluate the chemical composition of different raw and thermally treated coal tar pitch samples. The results from this study demonstrated that the baking isotherm temperature of coal tar pitch is the same irrespective of the chemical composition and origin of the coal tar pitch. In addition to that, the results also indicated that the coal tar pitches shrunk approximately 12% if exposed to temperatures above the baking isotherm temperature up to 1300°C.

Speaker
Biography:

Sang-Wook Han published over 70 research papers in solid state physics, nanoscience, and nanotechnology and given over 30 invited lectures. His major research field is the micro-structural and chemical property characterizations of nanomaterials using X-ray absorption fine structure (XAFS) and nanomaterial applications including sensors, battery, and solar cells.

Abstract:

VO2 is a typical metal-insulator-transition(MIT) material with the bandgap of ~0.7 eV and the Tc of ~ 70oC. VO2 is transparent and dark below and above the Tc, so that it can be applicable for smart windows by controlling the temperature. VO2 nanoparticles in a metallic phase block and scatter sunlight. The scattered sunlight by VO2 nanoparticles can be used in solar cells. We examined the local structural and electrical properties from VO2/ ZnO nanostructures by using the simultaneous measurements of x-ray absorption fine structure(XAFS) and resistance. The structural and electrical properties of VO2 depend on the length of ZnO nanorods underneath VO2. Direct comparison of simultaneously-measured resistance and XAFS from the VO2 demonstrates that the transitions of structures, local density of the V 3d orbital states, and resistance occurred in sequence during heating, whereas the properties changed simultaneously during cooling. XAFS reveals a substantial increase of Debye-Waller factors, particularly, V-V pairs along the {111} direction in the metallic phase. XAFS results indicate that soft phonon above Tc plays a critical role in the collapse of a small band gap of VO2. The local structural and the electrical properties of VO2/ZnO nanorods are considerably sensitive to the interface of VO2/ZnO as well as the length of ZnO nanorods. The interface properties of VO2 hetero-structures of should be taken into account for its applications to smart windows and solar cells.

Speaker
Biography:

Bi-Hsuan Lin has completed his Ph.D. from Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan and postdoctoral studies from European Synchrotron Radiation Facility (ESRF) for one year. Now He works at National Synchrotron Radiation Research Center as the assistant research scientist. He is participating the construction and commission of the X-ray nanoprobe beamlime at Taiwan Photo Source (TPS), and is responsible for development of the XEOL and TR-XEOL.

Abstract:

The advantages of using synchrotron radiation as the excitation source are that the tunable X-ray energy allows the preferential excitation of the elements through the X-ray absorption edges, and a suitable time structure of the synchrotron can be used to study the dynamics of luminescence of the materials. We develop the synchrotron based hard X-ray excited optical luminescence (XEOL) and time-resolved X-ray excited optical luminescence (TR-XEOL) at the X-ray Nanoprobe (XNP) facility at Taiwan Photon Source (TPS). In parallel to the construction of the XNP endstation, demonstrative XEOL experiments were conducted  by unfocused X-ray beam at Taiwan Light Source (TLS). The low temperature (4.2K) and temperature-dependent XEOL with X-ray excited energy below, at and above the Zn K-edge (9.659keV) were used to obtain the further information of the optical mechanisms of the ZnO microwires. The temperature-dependent XEOL behavior of the ZnO microwires with X-ray energy at 9.67 keV was shown in Figure 1. The free A excitons, donor bound excitons and their phonon replicas can be seen unambiguously at low temperatures. The design of the XEOL and TR-XEOL at XNP and the demonstrative experimental results will be reported.