Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Andrey Borzenko

Capacitor Sciences Inc., USA

Title: High energy density materials for capacitive energy storage.

Biography

Biography: Andrey Borzenko

Abstract

Rapidly growing energy production motivates the development of efficient and safe energy storage. Dielectric materials that we develop demonstrate high polarizability and sufficient resistivity to be candidates for massive inexpensive energy storage. We suggest the use of these dielectric materials as films in the new type of capacitors that would have higher energy density as compared to traditional capacitors.In general, dielectric films in the proposed capacitors should be polarizable, and maintain the polarization energy without breakdown. Hence, film forming species should contain at least two parts, the inner being responsible for the polarization, and the peripheral one having required resistance. Aromatic rings connected by diazo bridges are of great interest for us since similar linkers have been justified for many decades in azo dyes.

 

The potent material that we develop comprises -N=N-(p-C6H4)- subsequently conjugated units, along with electron acceptor group (NO2) on one side and electron donor -N(n-C10H21)2 group bearing resistive tails on the other side. Analysis of the crystal structure of the material reveals a head-to-tail arrangement of molecules, forming alternating layers of conjugated cores and resistive tails. Layers formed by tails are responsible for the high resistivity of our material. Corona experiments as well as in-situ Raman spectroscopy demonstrate nonlinear dielectric behaviour of the materials. This behaviour confirms that application of electric field leads to the increase of the polarization. Energy density of our material is estimated to be up to 2 kWh/kg.